China Good quality Engineering Plastic Peek Pulley Made by CNC Milling pulley design

Product Description

Engineering plastic Peek pulley made by CNC milling

PEEK is a kind of heat-resistant, high performance thermoplastic special engineering plastics. It has good mechanical properties and chemical resistance, abrasion resistance, and hydrolysis resistance properties etc.; It has a light proportion and self-lubricating properties. Due to very good processing properties, it can be filled with carbon fiber and MOS2 etc. To improve lubrication performance and mechanical strength further.

PEEK engineering plastics have a broad application space related to aviation, machinery, electronics, chemical industry, automobiles, and other high-tech industry, mechanical parts and accessory can be manufactured in stringent requirements, such as gears, bearings, piston rings, supporting ring, sealing ring (letter), valves, and other wear circle.

The outstanding performance of PEEK material mainly shows in the following aspects:

1. Heat-resistance
PEEK has a higher glass transition temperature and melting point (334º C). It is 1 of the reasons that it can be a reliable application in the requirement of the heat. Its heat load variable-temperature can be 316º C, continuous use temperature is 260º C.

2. Mechanical Properties
PEEK is the plastic that strikes a balance between toughness and rigidity. Especially, it has an excellent fatigue resistance against alternating stress that is the most talented of all plastics, and it can be comparable with alloys.

3. Self-lubricating
PEEK has outstanding sliding characteristics in all plastics; It is suitable for stringent requirements for low coefficient of friction and resistance to friction used. Especially, the self-lubricating properties of PEEK will be better if it is modified by carbon fiber and graphite mixed in the proportion of each of them.

4. Chemical Resistance (corrosion resistance)
PEEK has excellent chemical resistance. In ordinary chemicals, it can be dissolved or damaged only by concentrated sulfuric acid; Its corrosion resistance is similar to those of steel and nickel.

5. Flame Retardant
PEEK is a very stable polymer. The 1.45mm thick samples can achieve the highest standard of fire retardant without adding any fire retardant.

6. Stripping Resistance
PEEK has good stripping resistance; Therefore, it can be made into thin wires or electromagnetic wire coating, and it can be used in harsh conditions.

7. Fatigue Resistance
PEEK has the best fatigue resistance among all resins.

8. Radiation Resistance
PEEK has a very strong γ Irradiated resistance, which is stronger than the radiation resistance of polystyrene, which is the best 1 among generic resin. It can be made into high-performance wiring that can still make good insulation capability when γ Irradiation is at doses of 1100Mrad.

9. Hydrolysis Resistance
PEEK and its composites will not be affected chemically by water and high-pressure steam. The products that are made from this material will maintain the outstanding characteristics in continuous use in high temperature and high pressure water.

Property Item No. Unit PEEK-1000 PEEK-CA30 PEEK-GF30
Mechanical Properties 1 Density g/cm3 1.31 1.41 1.51
2  Water absorption(23ºCin air) % 0.20 0.14 0.14
3 Tensile strength MPa 110 130 90
4 Tensile strain at break % 20 5 5
5 Compressive stress(at 2%nominal strain) MPa 57 97 81
6 Charpy impact strength (unnotched) KJ/m 2 No break 35 35
7 Charpy impact strength (notched) KJ/m 2 3.5 4 4
8 Tensile modulus of elasticity MPa 4400 7700 6300
9 Ball indentation hardness N/mm 2 230 325 270
  10 Rockwell hardness M105 M102 M99

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Peek
Size: According to Drawing or Sample
Color: Natural, Black
Tooling: CNC Lathe
Transport Package: Packing in Wooden Pallet
Specification: RoHS, FDA
Customization:
Available

|

Customized Request

plastic pulley

Can plastic pulleys withstand exposure to environmental conditions?

Plastic pulleys are designed to withstand exposure to various environmental conditions. Here’s a detailed explanation:

1. Moisture and Humidity:

Plastic pulleys are typically made from materials that are resistant to moisture and humidity. They have inherent properties that prevent water absorption, reducing the risk of swelling, warping, or degradation. This makes plastic pulleys suitable for use in environments with high humidity or where occasional exposure to moisture is expected, such as garages or outdoor applications.

2. Temperature Extremes:

Plastic pulleys exhibit different levels of temperature resistance depending on the specific material used. Many plastic pulleys are designed to withstand a wide range of temperatures, including both high and low extremes. For example, some pulleys made from engineering-grade plastics can operate reliably in temperatures ranging from -40°C to 100°C (-40°F to 212°F). However, it’s important to check the manufacturer’s specifications for temperature limits and choose pulleys that are suitable for the specific environment in which they will be used.

3. UV Exposure:

Extended exposure to ultraviolet (UV) radiation from the sun can potentially degrade certain types of plastics. However, many plastic pulleys are manufactured with UV stabilizers or additives that provide resistance to UV radiation. These additives help protect the plastic material from UV-induced degradation, such as discoloration, brittleness, or loss of mechanical properties. Plastic pulleys with UV resistance are commonly used in outdoor applications where they are exposed to direct sunlight.

4. Chemical Resistance:

The chemical resistance of plastic pulleys varies depending on the specific material used. Some plastics, such as polypropylene (PP) or polyethylene (PE), have excellent chemical resistance and can withstand exposure to a wide range of chemicals, including solvents, acids, and alkalis. However, other plastics may be more susceptible to chemical attack. It’s important to consider the specific chemicals present in the environment and select plastic pulleys that are compatible and resistant to those substances.

5. Dust and Dirt:

Plastic pulleys are generally resistant to dust and dirt accumulation. Their smooth surfaces and low-friction properties make it difficult for particles to adhere to the pulley’s surface. This reduces the risk of debris interfering with the pulley’s movement or causing excessive wear. However, periodic cleaning may still be necessary to ensure optimal performance and prevent any buildup of contaminants that could affect the pulley’s operation.

6. Impact and Vibration:

Plastic pulleys are designed to withstand the impact and vibration commonly encountered in various applications. The plastic materials used in their construction offer good impact resistance, absorbing and dispersing energy to prevent damage or failure. Additionally, plastic pulleys can dampen vibrations, reducing the strain on the pulley and other components of the system. However, it’s important to choose pulleys with the appropriate material properties and consider the specific impact and vibration levels of the application.

7. Saltwater and Corrosive Environments:

In environments where saltwater or corrosive substances are present, it’s crucial to select plastic pulleys that are specifically designed for such conditions. Certain plastics, such as acetal (POM) or polyvinyl chloride (PVC), offer good resistance to saltwater and corrosion. These materials are commonly used in marine or coastal applications where the pulleys may be exposed to saltwater spray or corrosive atmospheres.

While plastic pulleys are generally designed to withstand exposure to environmental conditions, it’s important to consider the specific requirements of the application and choose pulleys that are suitable for the intended environment. Manufacturers often provide guidance on the recommended materials and specifications for plastic pulleys based on their environmental resistance properties.

plastic pulley

What role do plastic pulleys play in automotive engines and accessory systems?

Plastic pulleys play an essential role in automotive engines and accessory systems. Here’s a detailed explanation of the role of plastic pulleys in these applications:

1. Belt Driven Systems:

In automotive engines, plastic pulleys are commonly used in belt-driven systems. These systems include components such as the alternator, power steering pump, air conditioning compressor, water pump, and various accessory drives. Plastic pulleys are used as the guiding and tensioning components for the belts that drive these systems. They help maintain proper belt tension, ensure smooth operation, and facilitate the transfer of power from the engine to the various accessory components.

2. Lightweight Design:

Plastic pulleys offer the advantage of being lightweight compared to their metal counterparts. This lightweight design contributes to overall weight reduction in the vehicle, which is crucial for improving fuel efficiency and reducing emissions. By using plastic pulleys in automotive engines and accessory systems, manufacturers can achieve weight savings without compromising the strength and durability required for reliable operation.

3. Low Friction and Efficiency:

Plastic pulleys are designed to have low friction surfaces. This characteristic reduces the resistance encountered by the belts during operation, resulting in improved efficiency. The reduced friction helps optimize the power transfer from the engine to the accessory systems, ensuring that energy is not wasted and maximizing the overall efficiency of the vehicle. The use of plastic pulleys helps minimize energy losses and contributes to the performance and fuel economy of the automotive engine.

4. Corrosion Resistance:

Automotive engines and accessory systems are exposed to various environmental conditions, including moisture, heat, and chemicals. Plastic pulleys offer excellent resistance to corrosion, which is particularly beneficial in these demanding environments. Unlike metal pulleys that may rust or corrode, plastic pulleys remain unaffected by moisture or chemicals. This corrosion resistance ensures long-lasting performance and reduces the need for frequent replacements, contributing to the reliability and longevity of automotive engines and accessory systems.

5. Noise and Vibration Damping:

Plastic pulleys have inherent damping properties that help reduce noise and vibration in automotive engines and accessory systems. The damping effect of plastic materials absorbs vibrations generated during belt operation, resulting in smoother and quieter system performance. This is important for improving the overall driving experience and reducing the noise levels inside the vehicle cabin. Plastic pulleys help minimize noise and vibration, contributing to user comfort and the overall quality of the vehicle.

6. Design Flexibility:

Plastic pulleys offer a high degree of design flexibility, allowing for precise customization to match the specific requirements of automotive engines and accessory systems. They can be molded into various shapes, sizes, and configurations, enabling efficient integration into different engine layouts and space constraints. Plastic pulleys can incorporate features such as grooves, flanges, or mounting options directly into the design, ensuring optimal belt engagement and alignment. This design flexibility helps optimize the performance and reliability of automotive engines and accessory systems.

7. Cost-Effectiveness:

Plastic pulleys are generally cost-effective compared to their metal counterparts. The manufacturing process for plastic pulleys is typically less complex and less expensive, resulting in lower production costs. This cost advantage makes plastic pulleys a preferred choice in automotive applications where multiple pulleys are required, such as in serpentine belt systems. Plastic pulleys offer a balance between performance, durability, and affordability, contributing to the cost-effectiveness of automotive engines and accessory systems.

In summary, plastic pulleys play a vital role in automotive engines and accessory systems by guiding and tensioning belts, providing lightweight design, reducing friction and improving efficiency, offering corrosion resistance, damping noise and vibration, providing design flexibility, and delivering cost-effectiveness. Their contributions to these systems result in better performance, fuel efficiency, reliability, and overall driving experience in vehicles.

plastic pulley

What are the benefits of using plastic pulleys in various systems?

Plastic pulleys offer several benefits when used in various systems. Here’s a detailed explanation of the advantages of using plastic pulleys:

1. Lightweight:

Plastic pulleys are lightweight compared to metal pulleys. This characteristic is particularly advantageous in systems where weight reduction is desired, such as in automotive applications or portable equipment. The lightweight nature of plastic pulleys helps minimize the overall weight of the system, resulting in improved energy efficiency, reduced inertia, and easier handling and installation.

2. Low Friction:

Plastic pulleys are designed to have low friction surfaces. This feature reduces the resistance encountered by belts or cables during operation, resulting in smoother movement and improved efficiency. Low friction also helps minimize wear and tear on the belt or cable, extending their lifespan and reducing maintenance requirements. Additionally, the reduced friction contributes to energy savings and quieter operation of the system.

3. Corrosion Resistance:

Plastic pulleys offer excellent resistance to corrosion. Unlike metal pulleys that may rust or corrode when exposed to moisture or chemicals, plastic pulleys remain unaffected by such corrosive elements. This makes plastic pulleys a suitable choice for systems operating in outdoor or harsh environments, where exposure to moisture, chemicals, or saltwater is common. The corrosion resistance of plastic pulleys ensures long-lasting performance and reduces the need for frequent replacements.

4. Noise and Vibration Damping:

Plastic pulleys have inherent damping properties that help reduce noise and vibration in systems. The damping effect of plastic materials absorbs vibrations generated during belt or cable operation, resulting in smoother and quieter system performance. This is particularly beneficial in applications where noise reduction is important, such as in office equipment, household appliances, or precision machinery.

5. Design Flexibility:

Plastic pulleys offer a high degree of design flexibility. They can be molded into various shapes, sizes, and configurations, allowing for precise customization to match the specific requirements of the system. Plastic pulleys can incorporate features such as flanges, grooves, or mounting options directly into the design, ensuring optimal belt or cable engagement and alignment. This design flexibility enables efficient integration of the pulleys into different systems, improving overall performance and reliability.

6. Electrical Insulation:

Plastic pulleys provide electrical insulation properties. Unlike metal pulleys, which conduct electricity and can cause electrical interference or safety hazards, plastic pulleys offer insulation. This makes them suitable for use in systems where electrical conductivity needs to be avoided or isolated, such as in electronic equipment, robotics, or automation systems.

7. Cost-Effectiveness:

Plastic pulleys are generally more cost-effective compared to pulleys made from other materials, such as metal or ceramic. The manufacturing process for plastic pulleys is typically less complex and less expensive, resulting in lower production costs. This cost advantage makes plastic pulleys a cost-effective choice for various systems, especially in applications where multiple pulleys are required. They offer a balance between performance, durability, and affordability.

In summary, the benefits of using plastic pulleys in various systems include their lightweight nature, low friction, corrosion resistance, noise and vibration damping properties, design flexibility, electrical insulation, and cost-effectiveness. These advantages make plastic pulleys a popular choice in a wide range of industries and applications, contributing to improved system performance, durability, and overall efficiency.

China Good quality Engineering Plastic Peek Pulley Made by CNC Milling   pulley design	China Good quality Engineering Plastic Peek Pulley Made by CNC Milling   pulley design
editor by CX

2024-05-02

Recent Posts